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Abstract. We consider a model with a charged vector field along with a Cremmer–Scherk–Kalb–Ramond
(CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation
due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the
vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-KR sector from the
Higgs–KR sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We
propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z′ boson of the
so-called mirror matter models.

1 Introduction

Systematic studies of the relations between topological
models in (1 + 2)D and the phenomenology of planar the-
ories, like high-Tc superconductivity, have been taken into
account since the formulation of the Chern–Simons the-
ory [1,2]. One remarkable characteristic extracted from the
dynamics of the high-Tc superconductors is the violation of
the P - and the T -symmetries. This fact emphasizes its pla-
nar nature. As a matter of fact, topological models originat-
ing from a Chern–Simons term are restricted to the descrip-
tion of objects living in (1+2)D. This aspect has motivated
the study of extensions of planar gauge theories and the
mathematical properties underlined, such as the fractional
statistics [3]. Relevant extensions are the complexMaxwell–
Chern–Simons (MCS∗) model in (1+2)D [4] and the com-
plex Maxwell–Chern–Simons–Proca theory (MCSP∗). The
planar scenario and the dynamical mass generation of these
two models were largely exploited in [5]. In this context, the
physical investigation of topological dynamical aspects of
complex matter vector fields may still be better explored,
specially in (1+3)D high-energy physics as well as in con-
densed matter systems.

The concept of topological models in (1 + 3)D has for
the first time been pointed out by Cremmer and Scherk [6]
and Kalb and Ramond [7]; we refer to this class of models
as CSKR models. In these works, a topological term in
(1 + 3)D is introduced which is an extension to the well-
known Chern–Simons term in (1 + 2)D. This topological
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CSKR term introduces a direct coupling between a 1-form
gauge field and another 2-form gauge field without an effec-
tive contribution to the energy and the momentum of the
model; it however gives a mass contribution at tree level.
The CSKR, as a topological model, is another candidate
to generate mass without introducing a Higgs scalar field
into the Lagrangian. So, gauge symmetry is preserved and a
massive spin-1 boson appears. Consequently we can inquire
whether a charged spin-1 vector boson could be incorpo-
rated into the spectrum of the CSKR model. Incidentally,
vector-tensor field models have been largely studied, partic-
ularly in the context of N = 2 supersymmetric models [8].
On the other hand, the contraction of a Chern–Simons
term with a fixed vector has been proposed in order to
build up a Lorentz violating model to describe astrophys-
ical effects and cosmological new perspectives (possibly
from geometrical origin) due to the variation of the uni-
versal constants [9]. Indeed, the possibility of spontaneous
Lorentz and CPT -violation in string theory have been ex-
plored in [10], and more recent works have suggesting mod-
els in field theory to study Lorentz violation: Colladay and
Kostelecký [11, 12] suggested a general Lorentz violation
extension of the standard model including CPT -even and
CPT -odd terms in (1 + 3)D. They have obtained the re-
sult that the extension presents gauge invariance and a
conserved energy-momentum tensor while covariance un-
der particle rotations and boosts is broken. Coleman and
Glashow [13,14] have also investigated tiny non-invariant
terms introduced into the standard model Lagrangian in
a perturbative framework. The effects of these perturba-
tions increase rapidly with the energy for a preferred frame
which implies Lorentz violation of the system. The occur-



80 L.P. Colatto et al.: Charged tensor matter fields and Lorentz symmetry violation via symmetry breaking

rence of dynamical breaking of the Lorentz symmetry in
Abelian vector field models with the Wess–Zumino interac-
tion have been explored by Andrianov and Soldati [15,16].
On the other hand, Carrol, Field and Jackiw [17] have
demonstrated that ordinary Chern–Simons terms, studies
previously in (1+2)D, can couple to dual electromagnetic
tensor to a fixed and external four-vector. The effects of
these Chern–Simons terms in Lorentz and CPT -violation
have also been treated by Jackiw and Kostelecký [18].

The aim of this work is to study a charged vector-tensor
matter-field model based on the complex extension of the
CSKR model. We build up a full Lagrangian model where
all the possible invariant terms are included. Furthermore,
we add up a local U(1) symmetry in order to have an
interacting charged vector-tensor field model where a gauge
field Aµ mediates the interaction. In this model, the 1- and
2-form fields can coexist and interact with each other by
means of a topological term in (1 + 3)D. To check the
consistency in a quantum field-theoretic sense, we discuss
aspects such as causality and unitarity of the excitation
spectrum. To this aim, we take into account the local U(1)
interaction formulation and we will analyze the vacuum
states in the low-energy limit.

Due to the vector nature of the order parameter of the
model, the ground state is identified with a constant four-
vector (which we call bµ) which implies an anisotropy of the
vacuumstate as aby-product andnaturally inducesLorentz
symmetry violation. This vacuum anisotropy has recently
received much attention in connection with astrophysical
phenomena [19]. We study the role played by the vector
bµ and its consequences to the physical degrees of freedom
described in the spectrum of the model. We also explore
the possible consistent (no ghost and no tachyon) choices
of this vector background.

The outline of our paper is as follows: in Sect. 2, we
introduce the full global U(1) vector-tensor matter-field
model and obtain the equations of motion, the Noether
and the topological currents. In Sect. 3, using the hint of
accommodating the two kind of currents in a doublet, we
compute the propagators, poles and the physical consis-
tency relation that is obeyed. In Sect. 4, we switch on an
interacting gauge field and introduce local U(1) symmetry.
We study the SSB mechanism and conclude that the po-
tential achieves its minimum for a non-vanishing vacuum
expectation value of the charged vector-matter field. We
adopt the unitary gauge and, in Sect. 5, we study the spec-
trum and consistency relations for the gauge-KR sector. In
Sect. 6, the Higgs–KR sector is analyzed. Finally, in Sect. 7,
we discuss and comment on our results.

2 The global U(1) vector-tensor field model

Based on the CSKR model, we propose to study a full
U(1) charged vector-tensor matter-field model [6,7] where
we have also included the topological terms. It can be
written down as

L =
1
3

G∗
µνκGµνκ − 1

2
F ∗

µνFµν − (∂µBµ)∗(∂νBν)

+2(∂µHµν)∗(∂ρHρν) + α2B∗
µBµ + λ(B∗

µBµ)2 +

minus? −β2H∗
µνHµν + mεµνρσB∗

µ∂νHρσ

+mεµνρσBµ∂νH∗
ρσ, (1)

where Bµ and Hµν are the matter vector and tensor fields
respectively; α and β represent the mass term parameters of
the fields, λ represent the self-interacting parameter and m
the topological mass1. The field strengths can be defined by

Gµνκ = ∂µHνκ + ∂νHκµ + ∂κHµν ,

Fµν = ∂µBν − ∂νBµ. (2)

We observe that the topological term is a mixed one formed
by Bµ and Hµν in 4D as the term studied in [6, 7]. Con-
sequently, m is regarded as a topological mass. We also
consider a potential term that defines the quadratic mass
parameters α2 and β2. The conserved matter current Jµ

stemming from the global U(1) symmetry is given by

Jµ = i(BνFµν∗ − B∗
νFµν) − i(H∗

νκGµνκ − HνκGµνκ∗)

+imεµνκλ(B∗
νHκλ − BνH∗

κλ)

+i[Bµ(∂νBν)∗ − Bµ∗(∂νBν)] +

−i[(∂ρHρν)∗Hµν − (∂ρHρν)Hµν∗]. (3)

The coupled Euler–Lagrange equations are

�Bν = −α2Bν − λ(B∗
µBµ)Bν − mενκλρ∂κHλρ,

�Hνκ = −β2Hνκ + mενκλρ∂λBρ. (4)

According to the symmetry of the Lagrangian (1), we notice
the occurrence of a B4-interaction term that determines an
anti-symmetrized identically conserved topological current
of type

Jµν =
1
2

εµνκλ∂κBλ. (5)

Its associated topological-vector charge gives rise to “vec-
tor solitons” solution whose value may be regarded as a
quantum number. Indeed, this topological current induces
directly the non-linear behavior on the vector-matter-field
sector. The investigation of the non-linear dynamics and
the non-trivial configuration of the fields with anisotropic
energy in (1+2)D will be explored in a forthcoming work.

3 The spectrum analysis

In order to verify the physical spectrum, we rearrange the
Lagrangian (1) in a linearized form, or

L = VtOV, (6)

where O is a unitary wave operator and we represent V
as a vector-tensor duplet, or

V =


 Bµ

Hµν


 , (7)

1 We also adopt the metric (+, −, −, −).
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To obtain the propagators by means of the usual mecha-
nism,we take theO−1 using the usual product algebra of the
ordinary longitudinal, transverse and spin projector oper-
ators, which respectively are ωµν , θµν and sµνλ = εγ

µνλ∂γ .
In addition, we also have the anti-symmetric longitudi-
nal and transverse spin four-indexed projector operators
written down as follws:

θµν,λρ =
1
2

(θµλθνρ − θµρθνλ),

ωµν,λρ =
1
2

(ηµλωνρ − ηµρωνλ + ηνρωµλ − ηνλωµρ),

ηµν,λρ =
1
2

(ηµληνρ − ηµρηνλ), (8)

which implies a closed algebra, such that

θαβ
,λρ ωαβ

,λρ sαβ
λ

θµν,αβ θµν,λρ 0 sµνλ

ωµν,αβ 0 ωµν,λρ 0
sµαβ sµλρ 0 −�θµλ

,

where we have obtained the result that ηµν,λρ = ωµν,λρ +
θµν,λρ. We obtain the propagators, in momentum space,
which can be written down as follows:

〈B∗
µ, Bν〉 =

i
(k2 − α2)

ωµν

+
i(k2 − β2)

(k2 − µ2
+)(k2 − µ2−)

θµν ,

〈B∗
µ, Hνλ〉 = 〈H∗

µν , Bλ〉

=
im

(k2 − µ2
+)(k2 − µ2−)

sµνλ,

〈H∗
µν , Hλρ〉 =

i
(k2 − β2)

ωµν,λρ

+
i(k2 − α2)

(k2 − µ2
+)(k2 − µ2−)

θµν,λρ, (9)

where

µ2
± =

α2 + β2 + 2m2 ± √
(α2 + β2 + 2m2)2 − 4α2β2

2
,

(10)
which can be easily verified to be real and positive. As a
consequence, we observe that the poles k2 = α2, k2 = β2,
k2 = µ2

+ and k2 = µ2
− indicate the absence of tachyon

states. Another point is the positivity of the norm of the
states verified from the analysis of the residues of the prop-
agators obtained. To do that, we take the transition am-
plitudes considering the doublet “vector-tensor current”,
which can be written down as follows:

J =
(

Jµ

Jµν

)
, (11)

whereJµ is the usualNoether current, andJµν is the current
given in (3) and (5) which is conserved by definition.

We observe that there are two dynamical physical poles,
both describing massive particles specified by µ2

+ and µ2
−.

The transverse topological sectors are non-dynamical. We
obtained the result that the propagators 〈B∗

µ, Bν〉 and
〈H∗

µν , Hλρ〉 have the same poles and consequently the same
particles. The crossing ones have no dynamics. We can see
an order in the spectrum of the model which obeys the re-
lation

µ+ > β > α > µ−, (12)

resulting in a consistent physical model. We observe that
to perform the analysis of the degrees of freedom in 1 +
3 dimensions it was necessary to take the antisymmetric
topological current Jµν given in (5) to complete a doublet
with the usual vector one (Jµ). Indeed, the topological
current has induced directly the non-linear behavior of the
vector-matter-field sector.

There is a delicate point we should comment on here. It
concerns two important issues as far as field-theoretic con-
sistency in under discussion, namely, unitarity and renor-
malizability. In our specific model, a propagating time-
component of a charged vector-matter field is potentially a
ghost, in the sense of having a non-positive defined scalar
product in the Hilbert space of states. This kind of matter-
ghost degrees of freedom must be properly discussed2. In-
deed, this component is present in the self-interaction quar-
tic term. Nevertheless, the very aim of this work is to study
the possible origin of Lorentz symmetry breaking as due
to vector and tensor matter fields. For the sake of gauge
invariance, we had plugged into the action a dynamical
longitudinal component of the Bµ field. It is a matter-type
field, with the usual U(1)-phase transformation, and so this
term is allowed, once the space-time derivative is suitable
gauge-covariantized. The important question to be worked
out further (we shall come back to this question at the end
of Sect. 6) is to find a condition to ensure decoupling or non-
propagation of the non-physical longitudinal components
of Bµ. So, we finally state that the task of breaking Lorentz
symmetry has been accomplished by the proposed vector
and tensor matter fields. Next, the main issue is to ensure
quantum-mechanical consistency of the proposed action.

4 The local U(1) theory and SSB

To introduce interactions into the model represented by
the matter Lagrangian (1), we take as local the symmetry
phase, as the usual method, or

B
′
µ = e−iΛ(x)Bµ,

and

H
′
µν = e−iΛ(x)Hµν . (13)

In this way the symmetries are restored, introducing the
invariant Lagrangian written as

Lint =
1
3

G∗
µνκGµνκ − 1

2
F∗

µνFµν − 1
4

fµνfµν +

2 Subject of a forthcoming work
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−(DµBµ)∗(DνBν) + 2(DµHµν)∗(DρHρν)

+mεµνκλB∗
µDνHκλ + mεµνκλBµ(DνHκλ)∗

+α2B∗
µBµ + λ(B∗

µBµ)2 − β2H∗
µνHµν , (14)

where Dµ = ∂µ + ieAµ is the covariant derivative. The
above Lagrangian describes an interaction model between
the matter fields Bµ, Hµν and the gauge field Aµ, where
we define

Gµνκ = DµHνκ + DνHκµ + DκHµν ,

Fµν = DµBν − DνBµ, (15)

fµν = ∂µAν − ∂νAµ.

The new conserved current can be written down as follows:

∂µfµν = J ν = i(BνFµν∗ − B∗
νFµν) +

−i(H∗
νκGµνκ − HνκGµνκ∗)

+imεµνκλ(B∗
νHκλ − BνH∗

κλ)

+i[Bµ(DνBν)∗ − Bµ∗(DνBν)] +

−i[(DρHρν)∗Hµν − (DρHρν)Hµν∗], (16)

where J µ is the covariant matter current.
As we have seen, the covariant interacting vector-tensor

model described by the Lagrangian (14) introduces a U(1)
gauge field, Aµ. To explore the behavior of these fields
at low-energy phenomenology, we take the mechanism of
spontaneous breaking of the gauge symmetry. As the model
carries vector and tensor fields asmatter degrees of freedom,
the discussion of the SSB becomes subtle. The quartic self-
interacting non-linear term of the matter field Bµ in the
Lagrangian (14) could play a role similar to the Higgs field,
but with a vector nature. The λ(B∗

µBµ)2 does not spoil
the invariance of the Lagrangian under the group of local
U(1) transformations. So the condition of a minimum of
the energy (E) can be obtained taking the minimum of the
potential energy (V ), or

dE

dBµ
=

dV

dBµ
= α2B∗

µ + 2λ(B∗
νBν)B∗

µ = 0, (17)

where it is analogous to the B∗
µ term, recalling that α2 is a

mass parameter. In this case, the situation where α2 < 0
and λ > 0 introduces a non-trivial vacuum, and it follows
that the energy is a minimum at

B∗
µBµ = bµbµ = b2 = − α2

2λ
u2, (18)

where we observe that, in this case, we require that b2 be
a constant 4-vector parameter such that − α2

2λ > 0. In fact,
we observe that the VEV for the field Bµ is given by

〈0|Bµ|0〉 = bµ =

√
−α2

2λ
uµ, (19)

where uµ is a unitary vector which lies in a fixed direction
in space-time. In turn, it breaks the Lorentz symmetry,

and due to this arbitrariness we have to choose amongst
the possible types of vector: u2 = 1 (time-like), u2 = −1
(space-like) or u2 = 0 (light-like), analogous to the case
studied in [21]. As we are interested in non-trivial config-
urations of the fields, we exclude the light-like possibility.
Consequently, we reach a non-trivial vacuum solution for an
energy E which breaks spontaneously the U(1) local sym-
metry and also violates the Lorentz symmetry. We empha-
size that the Lorentz violation came along as a by-product
of the internal symmetry breaking. The Lorentz violation
has received much attention due to possible astrophysi-
cal and condensed matter effects [9, 22], which deserves a
deeper analysis. In this work, we are going to verify the
mass spectrum of this model. To this purpose, we begin
by observing that the system under consideration has an
infinite set of vacuum states, corresponding to points on a
circle of radius given by (19) posed on the complex plane
of the field Bµ. So we can decompose the complex fields
into components and we shift the field Bµ along the real
axis (analogous to the Higgs mechanism). So we have

Bµ → Bµ + bµ = Xµ + iYµ + bµ,

Hµν → Pµν + iQµν , (20)

so, we can express the potential term by

V = λ(B∗
µBµ − b2)2 − λb4 − β2H∗

µνHµν , (21)

which are substituted into the Lagrangian (14), whose ex-
pansion we find to be

Lbroken =
1
3

PµνκPµνκ +
1
3

QµνκQµνκ − 1
2

XµνXµν +

− 1
2

YµνY µν − (∂µXµ)2 − (∂µY µ)2

+2(∂µPµν)(∂ρPρν) + 2(∂µQµν)(∂ρQρν) +

−e2b2AµAµ − 1
4

fµνfµν + 2e(bµAν)(∂µYν) +

−2e(Aµbν)(∂µYν) + 2e(∂µY µ)(Aνbν)

+2mεµνκλXµ∂νPκλ − 2emεµνκλbµAνQκλ

+4λbµbνXµXν − β2PµνPµν − β2QµνQµν

+higher order terms, (22)

where Xµν , Yµν , Pµνκ and Qµνκ, are the field strengths
of their respective real components of 1- and 2-form fields
written in the definitions (20). We observe that the La-
grangian (22) is non-diagonal, making all this a subtle com-
putation. The terms 2e(bµAν)(∂µYν), −2e(Aµbν)(∂µYν)
and 2e(∂µY µ)(Aνbν) can be absorbed by carrying out the
following field re-definitions:

Aµ → Aµ − qν(∂µY ν) + qν(∂νYµ) + qµ(∂νY ν),

fµν → fµν + γYµν + Σµν(∂αY α), (23)

where qν , γ and Σµν are operators that can easily be found
by manipulating (23) and (22), which can be defined as

qν =
bν

eb2 , γ = qα∂α, and Σµν = qµ∂ν − qν∂µ. (24)
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So the resulting Lagrangian (22) is non-gauge invariant
because the Lorentz symmetry is broken. It breaks trans-
lation due to the presence of the γ operator, and it breaks
rotation by virtue of the Σµν operator present in the new
definitions in (23). Nevertheless, we can eliminate the Yµ

field by means of a gauge choice, picking a particular gauge
parameter in the U(1) phase transformation; so,

X
′
µ = Xµ − ΛYµ,

Y
′
µ = Yµ − ΛXµ + Λbµ, (25)

where Λ is an arbitrary gauge parameter. In fact, we can
gauge away the Yµ field choosing a particular gauge, bear-
ing in mind the unitarity condition on the particle spec-
trum. Then the Aµ field acquires mass due to the presence
of the scalar field parameter Λ = Φ in its longitudinal
mode. This describes the associated Higgs mechanism for
a complex vector. This can be seen through the following
re-defined transformations:

Aµ → Aµ − ∂µΦ, f
′
µν = fµν . (26)

Then, the Lagrangian (22) can be rewritten in the absence
of the interaction terms as,

Lbroken =
1
3

PµνκPµνκ +
1
3

QµνκQµνκ − 1
2

XµνXµν +

−(∂µXµ)2 + 2(∂µPµν)(∂ρPρν)

+2(∂µQµν)(∂ρQρν) − e2b2AµAµ − 1
4

fµνfµν

+2mεµνκλXµ∂νPκλ − 2emεµνκλbµAνQκλ

+4λbµbνXµXν − β2PµνPµν − β2QµνQµν .(27)

In order to extract the physical content of the Lagrangian
(27) one can split it in two sectors,

Lgauge−KR =
1
3

QµνκQµνκ − 1
4

fµνfµν

+2(∂µQµν)(∂ρQρν) − e2b2AµAµ +

−2emεµνκλbµAνQκλ − β2QµνQµν , (28)

LHiggs−KR =
1
3

PµνκPµνκ − 1
2

XµνXµν − (∂µXµ)2

+2(∂µPµν)(∂ρPρν) + 2mεµνκλXµ∂νPκλ

+4λbµbνXµXν − β2PµνPµν , (29)

where we can observe from the Lagrangian (28) that the
gauge field only interacts, via the topological term, with
the imaginary part of the tensor KR field. We can also ob-
serve that the mass of the Aµ field depends on the vector
bµ, the broken parameter, and on the topological mass as
well. On the other hand, the Lagrangian (29) indicates that
the vector bµ contributes to the mass of the real part of
the original neutral meson field. We emphasize that the ap-
pearance of this new boson field does not prescribe any new
symmetry group in the model. To verify the consistency,
we are going to compute the spectral analysis separately.

5 The spectrum of the gauge-KR sector

A remarkable feature of the Lagrangian (28) is that it
contains a massive gauge vector field (Proca) that inter-
acts with a 2-form KR field. An analysis of the physical
degrees of freedom requires one to deal with the unitary
gauge (25). Then, assuming that the fields are well-behaved
asymptotically, we can rearrange the Lagrangian consid-
ering a mixed doublet defined as Ut = (Aµ, Qµν). So, the
Lagrangian Lgauge−KR = UtOU where O can be easily
written down from the Lagrangian (28). We remark that
the re-defined currents preserve the unitarity as in the un-
broken case. Consequently, we can obtain the propagators
taking the inverse operator, O−1, and using the re-defined
current doublet in the momentum space, as follows:

〈Aµ, Aν〉 =
i

(k2 + e2b2)
Λµν

+
i(k2 − β2)

(k2 − τ2
+)(k2 − τ2−)

Ωµν ,

〈Aµ, Qνλ〉 = 〈Qµν , Aλ〉

=
im

(k2 − τ2
+)(k2 − τ2−)

Πµνλ, (30)

〈Qµν , Qλρ〉 =
i

(k2 − β2)
Λµν,λρ

+
i(k2 + e2b2)

(k2 − τ2
+)(k2 − τ2−)

Ωµν,λρ,

in these expressions above we have used the longitudinal,
Λµν , and the transverse, Ωµν and Πµνλ, given by

Λµν =
bµbν

b2 ,

Ωµν = ηµν − bµbν

b2 , (31)

Πµνλ = εγ
µνλbγ ,

whose multiplicative table looks as follows now:

Ωα
ν Λα

ν Πα
νλ

Ωµα Ωµν 0 Πµνλ

Λµα 0 Λµν 0
Πµα

λ Πµν
λ 0 −b2Ωµν

We can also define the anti-symmetrized longitudinal and
transverse operators as

Ωµν,λρ =
1
2

(ΩµλΩνρ − ΩµρΩνλ),

Λµν,λρ =
1
2

(ηµλΛνρ − ηµρΛνλ + ηνρΛµλ − ηνλΛµρ),

ηµν,λρ =
1
2

(ηµληνρ − ηµρηνλ), (32)

which implies the closed product algebra:
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Ωαβ
,λρ Λαβ

,λρ Παβ
λ

Ωµν,αβ Ωµν,λρ 0 Πµνλ

Λµν,αβ 0 Λµν,λρ 0
Πµαβ Πµλρ 0 −b2Ωµλ

,

where in addition we can observe that ηµν,λρ = Λµν,λρ +
Ωµν,λρ. The mass values, τ2

±, are easily obtained:

τ2
± =

e2b2 − β2 ± √
(β2 + e2b2)2 + 8m2e2b2

2
for the case where u2 = 1,

τ2
± =

−e2b2 − β2 ± √
(β2 − e2b2)2 − 8m2e2b2

2
for the case where u2 = −1. (33)

For the case u2 = 1 (time-like condition), only τ+ defines
a physical excitation. τ− is a tachyonic excitation. On the
other hand, for u2 = −1 (space-like condition), both τ+
and τ− are physical excitations for the restricted values of
the topological mass,

m <
β2 − e2b2

√
8eb

, (34)

where b = |bµ|. Observe that β cannot be zero, and β >
e|b|, with the result that the Lorentz symmetry breaking
implies an anisotropy of the space-time is realized as a
mass generation on the gauge field, similar to the Higgs
mechanism whose consistency is ensured by the presence
of a mass term for the 2-form Hµν field.

6 The spectrum of the Higgs–KR sector

Now, we are going to verify the physical spectrum of the
Higgs–KRsector. In a similarway as in the previous case,we
are also going to analyze the consequences of the symmetry
breaking on the spectrum of the Lagrangian (29). We can
verify that due to the presence of an anisotropic space-time,
the Xµ neutral vector field is deformed, which implies non-
defined propagator poles. Therefore, the physical states
can only be obtained by considering the projections of the
Xµ field along and perpendicular to the bµ vector. Then
defining the Wµ and Zµ as the parallel and transverse
projections of the Xµ field respectively, or

Wµ =
bαXα

b2 bµ, (35)

Zµ = Xµ − bαXα

b2 bµ. (36)

We can perform rotations at each point in deformed-space
where the doublet Ut = (Xµ, Pµν) can be taken as

Ut = (Xµ, Pµν) ⇒ (37){
U(W )t = (Wµ, Pµν)l| Wµ =

bαXα

b2 bµ, Zµ = 0
}

,

Ut = (Xµ, Pµν) ⇒ (38){
U(Z)t = (Zµ, Pµν)p| Zµ = Xµ − bαXα

b2 bµ, Wµ = 0
}

,

where the sub-indexes l and p mean the longitudinal and
the perpendicular projections, respectively. The doublets
U(W ) and U(Z) are orthogonal and may be chosen non-
simultaneously. Then we can now rewrite the Lagrangian
(29) for each one of the above situations, which for the
U(W ) case yields

L(W ) = −Pµν(ηµν,λρ�)Pλρ − Wµ(ηµν�)Wν

+4λb2WµWµ − β2PµνPµν

+mεµνρσWµ∂νPρσ − mεµνρσPρσ∂νWµ; (39)

hence, we can note that by substituting the re-definition
of the Wµ field (35) into (29) the cross massive term
4λbµbνXµXν is transformed to 4λb2WµWµ and so is given
a mass term form. On the other hand, we can choose the
Xµ field perpendicular to bµ, where one can write (29) in
the U(Z) case. We have

L(Z) = −Pµν(ηµν,λρ�)Pλρ + Zµ(ηµν�)Zν +

−β2PµνPµν + mεµνρσZµ∂νPρσ +

−mεµνρσPρσ∂νZµ, (40)

where the mass term 4λbµbνXµXν is gauged away. In order
to verify the degrees of freedom of these two cases, we
are going to deal with the Lagrangian expressions (39)
and (40), and we use the analogous method of the gauge-
KR sector. So we now have two operators: O(W ), O(Z) and
their respective inverses are straightforwardly obtained.
The associated to O(W )−1 propagator is obtained as

〈Wµ, Wν〉 =
i

(k2 − ᾱ2)
ωµν

+
i(k2 − β2)

(k2 − µ̄2
+)(k2 − µ̄2−)

θµν ,

〈Wµ, Pνλ〉 = 〈Pµν , Wλ〉

=
im

(k2 − µ̄2
+)(k2 − µ̄2−)

sµνλ, (41)

〈Pµν , Pλρ〉 =
i

(k2 − β2)
ωµν,λρ

+
i(k2 − ᾱ2)

(k2 − µ̄2
+)(k2 − µ̄2−)

θµν,λρ,

where we have defined

µ̄2
± =

ᾱ2 + β2 + 2m2 ± √
(ᾱ2 + β2 + 2m2)2 − 4ᾱ2β2

2
(42)

and ᾱ = 4λb2. In the same way, for the perpendicular wave
operator O(Z)−1 this results in

〈Zµ, Zν〉 =
i

k2 ωµν +
i(k2 − β2)
k2(k2 − ξ2)

θµν ,
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Fig. 1. One-loop corrections to the B-field
self-energy. p stands for the external mo-
mentum carried by B

〈Zµ, Pνλ〉 = 〈Pµν , Zλ〉 =
m

k2(k2 − ξ2)
sµνλ, (43)

〈Pµν , Pλρ〉 =
i

(k2 − β2)
ωµν,λρ +

i
(k2 − ξ2)

θµν,λρ,

where ξ2 = β2 + 2m2. In order to guarantee unitarity, we
must have the real part of the current–current amplitude
greater than zero.We can observe from the propagators (41)
that the longitudinal sectors of the fields W and P exhibit
no tachyons and they are not dynamical. On the other hand,
the transverse degrees of freedom of the non-mixing terms
are physical as far as we assume in the expression (42) that
µ̄2

+ > µ̄2
−, µ̄2

+ > β̄2 and ᾱ2 > µ̄2
−. As a consequence, the

L(W ) has a pole k2 = µ̄2
+ for the propagator 〈Wµ, Wν〉T,

and a pole k2 = µ̄2
− for the propagator 〈Wµν , Wλρ〉T; these

are dynamical physical excitations. As already mentioned
at the end of Sect. 3, we should state more clearly our
argument concerning the consequences of the quartic Bµ-
coupling which yields non-unitarity due to the coupling of
its longitudinal component. Indeed, let us present below the
expression giving the power-counting, δ, for the primitively
divergent graphs:

δ = 4 − EH − EB − EA − VBHA − IBH , (44)

where EH , EB and EA stand for the number of external
lines of the H, B and A fields respectively, VBHA expresses
the number of super-renormalizable topological vertices
and IBH counts the number of mixed matter propagators,
whose asymptotic behavior goes as 1

k3 . The self-energy
contribution for the B-field has a logarithmic divergence
associated to the kinetic part (the external momentum,
p, comes from the momentum-space loop integral, lower-
ing the divergence from quadratic to a logarithmic one).
Its mass correction is, however, quadratically divergent.
Based on this power-counting argument and on the Ward
identities derived for the model, we can safely state that
the loop corrections to the kinetic term |∂µBµ|2 are sup-
pressed by a logarithmic factor of the cut-off. Indeed, in
view of the massive propagators inside the loops and due
to the dimensional regularization technique, there appear
logarithms involving the masses. Therefore, if one does not

introduce that kinetic term at tree level, and if one consid-
ers the model much below its energy cut-off, non-physical
dynamical modes are suppressed. So, if working in this safe
region of the model, the Bµ-field accomplishes its task of
breaking the Lorentz symmetry without the price of vio-
lating unitarity. Taking the viewpoint of considering the
model below its cut-off, we understand that the low-energy
ghost modes do not show up through radiative corrections
and renormalizability is not jeopardized as long as we keep
far below the energy cut-off. The model should then be
viewed as an effective theory valid up to a cut-off below
which Lorentz symmetry is spontaneously broken.

7 Conclusions

In this paper, we have presented a charged vector-tensor
(CSKR) matter field model which shows a connection be-
tween a vector (1-form) field Bµ and an antisymmetric
tensor (2-form) field Hµν via a topological interaction in
(1+3)D. Furthermore, it presents a global U(1) symmetry.
We have shown that the introduction of a self-interacting
B4-type potential in the Lagrangian (1) is necessary to de-
fine the topological 2-form (tensor) current (5). Thus, we
propose a vector-tensor current which is a doublet where
it accommodates the ordinary Noether current Jµ along
with the topological 2-form current Jµν . With this proce-
dure, we can obtain the physical spectrum of the model in
a direct way, where we verify the existence of two distinct
simple physical (non-tachyonic and non-ghost) poles with
masses µ+ and µ− for the transverse sectors. We empha-
size that, in spite of the peculiar form of the model, the
longitudinal ones decouples. The propagator poles include
topological (m2) and Proca (α2 and β2) mass parameters
which implies that the very same physical degrees of free-
dom are present in the propagators of the 1-form Bµ (KR)
field and the 2-form Hµν (KB) field. In the charged case, we
introduce a gauge interacting field Aµ and we explore the
low-energy dynamics of the model, by studying the sponta-
neous symmetry breaking (SSB) mechanism. The quartic
form of the potential energy of the vector-tensor matter
field indicates that the SSB mechanism could take place for



86 L.P. Colatto et al.: Charged tensor matter fields and Lorentz symmetry violation via symmetry breaking

this field. Only the vector (1-form) Bµ (KR) field can reach
the very minimum of energy of the model, consequently it
is responsible for the SSB mechanism. On the other hand,
the vacuum energy value of this field naturally violates the
Lorentz symmetry which fixed a vector deviation to the
minimum and implies contributions to the splitting of the
mass spectrum. We observe that the possibilities of the
fixed vector has to be of physical consistency preventing
ghost and tachyon degrees of freedom, and so following in
an analogous way the classification obtained in [21]. The
effects of Lorentz violating terms have recently been sub-
ject of study due to effects in astrophysical and condensed
matter physics [9,22]. We have studied the contributions of
the fixed vector bµ to the mass at tree level, where to this
purpose we find it suitable to introduce the unitary gauge,
and we redefine the fields and parameters in this effective
resulting model. We remark that the field Yµ is gauged away
and we consequently recover the usual gauge transforma-
tion of the dynamical elements of the model. We obtain
two independent dynamical systems: one describes a model
where a KB-field interacts with a gauge field, and another
one a neutral KB-field interacting with the “Higgs” vector
field. We emphasize that this model presents a new neu-
tral vector particle without the introduction of an “extra”
U(1) group as it has been largely explored in the liter-
ature. Indeed, many phenomenological works have been
proposed with the aim of suggesting an extra symmetry
to account for discrepancies in the standard model, partic-
ularly Z–Z ′ mixing [30]. In astrophysical models coming
from high energy considerations, it has been suggested that
non-baryonic dark matter could have an exotic astrophys-
ical origin where a possible mirror matter described by
extra symmetries [31, 32] emerges as an interesting pos-
sibility. In our case, an extra and/or mirror matter has
a topological origin as it was suggested in [31], and the
Lorentz violation could imply optical astrophysical effects
that influence the red-shift deviations and the anisotropy of
the cosmic radiation background, and that possibly mask
the observational effects of topological defects. Finally, we
analyze the spectrum of the two independent dynamical
models obtained after the SSB mechanism. In the gauge-
KR sector, we obtain the condition on the mass parameters
and the fixed vector so as to have a physically consistent
condition where the mass term to the 2-form matter field
is crucial. We obtain that the longitudinal part has no
dynamics. The result is that this sector could represent
the effective dynamics of a charged spin-1 particle. On
the other hand, the Higgs–KR sector can represent the
dynamics of a massive neutral particle that, due to the
Lorentz violation, can only be analyzed in the longitudi-
nal and transverse projected degrees of freedom. Indeed,
from another perspective this particular feature of Lorentz
violation is emphasized in its classical electromagnetic ver-
sion [33] and in perturbation studies of the model [34]. We
obtain the conditions on the mass parameters (topological
and not) to get physically consistent degrees of freedom
at tree level. In this sector, the fixed vector bµ dictates a
preferred direction in space. We can conclude to the given
perspective to compute a dimensional reduction of the KR

model from (1 + 3)D to (1 + 2)D, where we can conjec-
ture the existence of charged “vector solitons” derived off
topological solutions in (1 + 2)D, which is the study of a
forthcoming work [20].
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